A Transfer Learning Evaluation of Deep Neural Networks for Image Classification
نویسندگان
چکیده
Transfer learning is a machine technique that uses previously acquired knowledge from source domain to enhance in target by reusing learned weights. This ubiquitous because of its great advantages achieving high performance while saving training time, memory, and effort network design. In this paper, we investigate how select the best pre-trained model meets requirements for image classification tasks. our study, refined output layers general parameters apply eleven processing models, on ImageNet, five different datasets. We measured accuracy, accuracy density, size evaluate models both sessions one episode with ten episodes.
منابع مشابه
Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملDocument Image Classification with Intra-Domain Transfer Learning and Stacked Generalization of Deep Convolutional Neural Networks
In this work, a region-based Deep Convolutional Neural Network framework is proposed for document structure learning. The contribution of this work involves efficient training of region based classifiers and effective ensembling for document image classification. A primary level of ‘inter-domain’ transfer learning is used by exporting weights from a pre-trained VGG16 architecture on the ImageNe...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملDeep transfer learning for classification of time-delayed Gaussian networks
In this paper, we propose deep transfer learning for classification of Gaussian networks with time-delayed regulations. To ensure robust signaling, most real world problems from related domains have inherent alternate pathways that can be learned incrementally from a stable form of the baseline. In this paper, we leverage on this characteristic to address the challenges of complexity and scalab...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine learning and knowledge extraction
سال: 2022
ISSN: ['2504-4990']
DOI: https://doi.org/10.3390/make4010002